Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Am Chem Soc ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698691

RESUMEN

Structural motifs containing nitrogen-nitrogen (N-N) bonds are prevalent in a large number of clinical drugs and bioactive natural products. Hydrazine (N2H4) serves as a widely utilized building block for the preparation of these N-N-containing molecules in organic synthesis. Despite its common use in chemical processes, no enzyme has been identified to catalyze the incorporation of free hydrazine in natural product biosynthesis. Here, we report that a hydrazine transferase catalyzes the condensation of N2H4 and an aromatic polyketide pathway intermediate, leading to the formation of a rare N-aminolactam pharmacophore in the biosynthesis of broad-spectrum antibiotic albofungin. These results expand the current knowledge on the biosynthetic mechanism for natural products with N-N units and should facilitate future development of biocatalysts for the production of N-N-containing chemicals.

2.
Carbohydr Polym ; 335: 121920, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616070

RESUMEN

Natural polymer-based hydrogels have been wildly used in electronic skin, health monitoring and human motion sensing. However, the construction of hydrogel with excellent mechanical strength and electrical conductivity totally using natural polymers still faces many challenges. In this paper, gelatin and oxidized sodium carboxymethylcellulose were used to synthesize a double-network hydrogel through the dynamic Schiff base bonds. Then, the mechanical strength of the hydrogel was further enhanced by immersing it in an ammonium sulfate solution based on the Hofmeister effect between gelatin and salt. Finally, the gelatin/oxidized sodium carboxymethylcellulose hydrogel exhibited high tensile properties (614 %), tensile fracture strength (2.6 MPa), excellent compressive fracture strength (64 MPa), and compressive toughness (4.28 MJ/m3). Also, the electrical conductivity reached 3.94 S/m. The hydrogel after salt soaked was fabricated as strain sensors, which could accurately monitor the movement of many joints in the human body, such as fingers, wrists, elbows, neck, and throat. Therefore, the designed hydrogel fully originated from natural polymers and has great application potential in motion detection and information recording.

3.
Environ Toxicol ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530049

RESUMEN

BACKGROUND: Melanoma, the most lethal form of skin cancer, presents substantial challenges despite effective surgical interventions for in situ lesions. Regulatory T cells (Tregs) wield a pivotal immunomodulatory influence within the tumor microenvironment, yet their impact on melanoma prognosis and direct molecular interactions with melanoma cells remain elusive. This investigation employs single-cell analysis to unveil the intricate nature of Tregs in human melanoma. METHODS: Single-cell RNA and bulk sequencing data, alongside clinical information, were obtained from public repositories. Initially, GO and GSEA analyses were employed to delineate functional disparities among distinct cell subsets. Pseudotime and cell-cell interconnection analyses were conducted, followed by an endeavor to construct a prognostic model grounded in Treg-associated risk scores. This model's efficacy was demonstrated via PCA and K-M analyses, with multivariate Cox regression affirming its independent prognostic value in melanoma patients. Furthermore, immune infiltration analysis, immune checkpoint gene expression scrutiny, and drug sensitivity assessments were performed to ascertain the clinical relevance of this prognostic model. RESULTS: Following batch effect correction, 80 025 cells partitioned into 31 clusters, encompassing B cells, plasma cells, endothelial cells, fibroblasts, melanoma cells, monocytes, macrophages, and T_NK cells. Within these, 4240 CD4+ T cells were subclassified into seven distinct types. Functional analysis underscored the immunomodulatory function of Tregs within the melanoma tumor microenvironment, elucidating disparities among Treg subpopulations. Notably, the ITGB2 signaling pathway emerged as a plausible molecular nexus linking Tregs to melanoma cells. Our prognostic signature exhibited robust predictive capacities for melanoma prognosis and potential implications in evaluating immunotherapy response. CONCLUSION: Tregs exert a critical role in immune suppression within the melanoma tumor microenvironment, revealing a potential molecular-level association with melanoma cells. Our innovative Treg-centered signature introduces a promising prognostic marker for melanoma, holding potential for future clinical prognostic assessments.

4.
Trials ; 25(1): 42, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216974

RESUMEN

BACKGROUND: Mandibular distraction osteogenesis (MDO) is a major part of the treatment for hemifacial microsomia patients. Due to the narrow surgical field of the intraoral approach, osteotomy accuracy is highly dependent on the surgeons' experience. Electromagnetic (EM) tracking systems can achieve satisfying accuracy to provide helpful real-time surgical navigation. Our research team developed an EM navigation system based on artificial intelligence, which has been justified in improving the accuracy of osteotomy in the MDO in animal experiments. This study aims to clarify the effect of the EM navigation system in improving the MDO accuracy for hemifacial microsomia patients. METHODS: This study is designed as a single-centered and randomized controlled trial. Altogether, 22 hemifacial microsomia patients are randomly assigned to the experiment and control groups. All patients receive three-dimensional CT scans and preoperative surgical plans. The EM navigation system will be set up for those in the experiment group, and the control group will undergo traditional surgery. The primary outcome is the surgical precision by comparing the osteotomy position of pre- and postoperative CT scan images through the Geomagic Control software. The secondary outcomes include mandibular symmetry (occlusal plane deviation angle, mandibular ramus height, and body length), pain scale, and complications. Other indications, such as the adverse events of the system and the satisfactory score from patients and their families, will be recorded. DISCUSSION: This small sample randomized controlled trial intends to explore the application of an EM navigation system in MDO for patients, which has been adopted in other surgeries such as orthognathic procedures. Because of the delicate structures of children and the narrow surgical view, accurate osteotomy and protection of nearby tissue from injury are essential for successful treatment. The EM navigation system based on artificial intelligence adopted in this trial is hypothesized to provide precise real-time navigation for surgeons and optimally improve patient outcomes, including function and aesthetic results. The results of this trial will extend the application of new navigation technology in pediatric plastic surgery. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2200061565. Registered on 29 June 2022.


Asunto(s)
Síndrome de Goldenhar , Osteogénesis por Distracción , Niño , Humanos , Preescolar , Adolescente , Síndrome de Goldenhar/diagnóstico por imagen , Síndrome de Goldenhar/cirugía , Inteligencia Artificial , Osteogénesis por Distracción/efectos adversos , Osteogénesis por Distracción/métodos , Método Simple Ciego , Mandíbula/diagnóstico por imagen , Mandíbula/cirugía , Ensayos Clínicos Controlados Aleatorios como Asunto
6.
Biomacromolecules ; 25(1): 134-142, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38145887

RESUMEN

Hydrogels with intrinsic antimicrobial capabilities based on natural strategies have been studied as a hot topic in biomedicine. Nevertheless, it is highly challenging to thoroughly develop a bacteriostatic natural hydrogel. Borneol as a traditional Chinese medicine possesses a unique broad-spectrum antibacterial activity under a membrane-breaking mechanism. In this study, a range of fully natural antibacterial hydrogels are designed and synthesized via the Schiff base cross-linking of carboxymethyl chitosan and dialdehyde dextran grafted natural borneol. The borneol with three configurations is hydrophilically modified onto dextran to boost its antibacterial activity. Also, the synergism of hydrophilic-modified borneol groups and positively charged ammonium ions of carboxymethyl chitosan make the hydrogels totally constrict the E. coli and S. aureus growth during 24 h. Furthermore, the hydrogels exhibit good in vitro cytocompatibility through cytotoxicity, protein adhesion, and hemolytic tests. In view of the injectability, the hydrogels can be delivered to the target site through a minimally invasive route. In short, this work offers a potential tactic to develop antibacterial hydrogels for the treatment of topical wound infections.


Asunto(s)
Quitosano , Quitosano/farmacología , Hidrogeles/farmacología , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología
7.
Front Immunol ; 14: 1304466, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077400

RESUMEN

Background: We explore sphingolipid-related genes (SRGs) in skin melanoma (SKCM) to develop a prognostic indicator for patient outcomes. Dysregulated lipid metabolism is linked to aggressive behavior in various cancers, including SKCM. However, the exact role and mechanism of sphingolipid metabolism in melanoma remain partially understood. Methods: We integrated scRNA-seq data from melanoma patients sourced from the GEO database. Through the utilization of the Seurat R package, we successfully identified distinct gene clusters associated with patient survival in the scRNA-seq data. Key prognostic genes were identified through single-factor Cox analysis and used to develop a prognostic model using LASSO and stepwise regression algorithms. Additionally, we evaluated the predictive potential of these genes within the immune microenvironment and their relevance to immunotherapy. Finally, we validated the functional significance of the high-risk gene IRX3 through in vitro experiments. Results: Analysis of scRNA-seq data identified distinct expression patterns of 4 specific genes (SRGs) in diverse cell subpopulations. Re-clustering cells based on increased SRG expression revealed 7 subgroups with significant prognostic implications. Using marker genes, lasso, and Cox regression, we selected 11 genes to construct a risk signature. This signature demonstrated a strong correlation with immune cell infiltration and stromal scores, highlighting its relevance in the tumor microenvironment. Functional studies involving IRX3 knockdown in A375 and WM-115 cells showed significant reductions in cell viability, proliferation, and invasiveness. Conclusion: SRG-based risk signature holds promise for precise melanoma prognosis. An in-depth exploration of SRG characteristics offers insights into immunotherapy response. Therapeutic targeting of the IRX3 gene may benefit melanoma patients.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/terapia , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/terapia , Pronóstico , Inmunoterapia , Metabolismo de los Lípidos , Microambiente Tumoral/genética
8.
J Am Chem Soc ; 145(49): 27131-27139, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38018127

RESUMEN

Azoxy compounds exhibit a wide array of biological activities and possess distinctive chemical properties. Although there has been considerable interest in the biosynthetic mechanisms of azoxy metabolites, the enzymatic basis responsible for azoxy bond formation has remained largely enigmatic. In this study, we unveil the enzyme cascade that constructs the azoxy bond in valanimycin biosynthesis. Our research demonstrates that a pair of metalloenzymes, comprising a membrane-bound hydrazine synthase and a nonheme diiron azoxy synthase, collaborate to convert an unstable pathway intermediate to an azoxy product through a hydrazine-azo-azoxy pathway. Additionally, by characterizing homologues of this enzyme pair from other azoxy metabolite pathways, we propose that this two-enzyme cascade could represent a conserved enzymatic strategy for azoxy bond formation in bacteria. These findings provide significant mechanistic insights into biological N-N bond formation and should facilitate the targeted isolation of bioactive azoxy compounds through genome mining.


Asunto(s)
Bacterias , Hidrazinas
9.
Front Surg ; 10: 1252045, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928064

RESUMEN

Background: Enterocutaneous fistula is one of the most challenging problems facing surgeons. In severe cases, a large amount of fluid loss can lead to problems such as water and electrolyte acid-base imbalance, malnutrition, infection, and organ dysfunction. Here we reported a case of platelet-rich plasma combined with lyophilizing thrombin powder for the treatment of complicated enterocutaneous fistula. Case presentation: A 48-year-old male, more than 2 years after the operation of abdominal trauma, the leakage of the fistula in the right upper abdominal wall was accompanied by fever for 3 days. The Contrast Fistulography and upper abdomen CT accurately depicted the entry of the meglumine diatrizoate into the small intestine through the small fistula. The patient had a large abdominal wall defect and severe intestinal adhesions. Reoperation may lead to more serious ECF. Therefore, we decided to seal the fistulas with PRP combined with lyophilizing thrombin powder. Conclusions: The findings in this case report suggest that the combination of PRP and lyophilized thrombin powder holds promise as a viable approach for managing ECF in patients with chronic abdominal wall fistulas, as it appears to facilitate fistula closure, reduce healing time, and improve patient outcomes.

10.
Artículo en Inglés | MEDLINE | ID: mdl-37971465

RESUMEN

Background: Facial skin relaxation has become an important part in solving the problem of facial rejuvenation. Minimally invasive or noninvasive skin-tightening procedures have become a trend for facial rejuvenation. Bipolar radiofrequency (RF) is a new option for treating skin relaxation and is more effective than noninvasive surgery without surgical incision. Objective: To explore the effect of different bipolar RF powers on the area of the original box, changes of skin and subcutaneous tissue thickness and numbers of fibroblasts in rabbits. Design: The research team performed an animal study. Setting: This study took place in Affiliated Hospital of Nanjing University of Chinese Medicine. Participants: Eighteen common-grade adult New Zealand rabbits (female, 2.5-3.0 kg). Methods: Bipolar radiofrequency therapy was given to a girl rabbit on the left side of the treatment area. Standard HE and Masson staining were performed to assess the pathological changes, area of the original box and the number of fibroblasts in skin and subcutaneous tissues. Outcome Measures: (1) The area of the original box, changes of skin and subcutaneous tissue thickness, and numbers of fibroblasts under different bipolar RF temperatures or under different bipolar RF powers immediately after surgery, 1 month after surgery and 3 months after surgery were observed. (2) Standard HE and Masson staining results. Results: Under the condition of certain instrument power, at 36de 38d and 40nd the area of the original box shrank to different degrees immediately after surgery (16.54±0.37, 17.78±0.03, 17.19±0.01), 1 month after surgery (16.59±0.31, 17.82±0.01, 18.34±0.30) and 3 months after surgery (16.89±0.12, 18.16±0.14, 19.23±0.32) compared with that before surgery (P < .05). Under specific temperature conditions, at 16 W, 18 W, 20 W, and 22 W, the area of the original box shrank to different degrees immediately after surgery (16.40±0.49, 15.55±0.57, 17.54±0.12, 16.19±0.27), 1 month after surgery (16.88±0.12, 17.46±0.02, 18.05±0.35, 19.41±0.08) and 3 months after surgery (19.09±1.01, 18.30±0.69, 20.00±0.29, 21.20±0.90) compared with that before surgery (P < .05). When the power was fixed, the thickness of skin and subcutaneous tissue decreased immediately after surgery (6.7, 6.8, 7), 1 month after surgery (6, 6.1, 6.3) and 3 months after surgery (6.4, 6.5, 6.2) at different temperatures (P < .05). When the temperature was fixed, the thickness of skin and subcutaneous tissue decreased immediately after surgery (6.1, 6.08, 6.03), 1 month after surgery (6.2, 6.15, 6.13), and 3 months after surgery (6.2, 6.23, 6.03) under different powers (P < .05). Under the condition of certain instrument power, at 36de 38d and 40n, the number of fibroblasts increased to different degrees immediately after surgery (26.54±2.37, 30.78±3.03, 37.19±4.01), 1 month after surgery (28.59±2.31, 34.82±3.01, 40.34±4.30), and 3 months after surgery (30.89±0.12, 38.16±0.14, 42.23±0.32) compared with that before surgery, and all were statistically significant (P < .05). Under specific temperature conditions, at 16 W, 18 W, 20 W, and 22 W, the number of fibroblasts increased to different degrees immediately after surgery (28.29±2.49, 30.97±3.57, 38.74±3.12, 45.68±4.27), 1 month after surgery (30.88±3.12, 32.46±4.02, 41.05±0.35, 50.41±0.08), and 3 months after surgery (29.99±2.01, 33.30±2.69, 39.00±3.29, 23.20±2.90) compared with that before surgery, and all were statistically significant (P < .05). Conclusions: Our study clarifies that bipolar RF can decrease the skin and subcutaneous tissue thickness and increase the numbers of fibroblasts at the temperature of 36°C, 38°C, and 40°C and frequency of 16-22 W, which has a therapeutical effect on skin contraction. Our study might effectively improve the skin slack of patients, and the postoperative maintenance rate is high, and will not cause obvious complications. This study may provide a theoretical direction for clinicians to tighten the skin of patients using bipolar RF.

11.
RSC Adv ; 13(43): 30520-30527, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37854493

RESUMEN

A new photocatalyst of Bi/BiOI/Carbon quantum dots (CQDs) was synthesized via a simple method. Photocatalytic performance of Bi/BiOI/CQDs was evaluated by photodegradation of RhB. Experiment indicated that the introduction of CQDs could improve the photocatalysis activity of BiOI obviously. Moreover, there is a optimum percentage of CQDs. In this photocatalytic system, the enhanced photoactivity was mainly attributed to the heterojunction interface between CQDs and BiOI, as well as the enhanced light harvesting for the appropriate CQDs introduction. The radicals trapping experiments revealed that O2˙-, ˙OH and h+ were the main active species during the photocatalysis process.

12.
Synth Syst Biotechnol ; 8(3): 520-526, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37575356

RESUMEN

Microbial natural products have been one of the most important sources for drug development. In the current postgenomic era, sequence-driven approaches for natural product discovery are becoming increasingly popular. Here, we develop an effective genome mining strategy for the targeted discovery of microbial metabolites with antitumor activities. Our method employs uvrA-like genes as genetic markers, which have been identified in the biosynthetic gene clusters (BGCs) of several chemotherapeutic drugs of microbial origin and confer self-resistance to the corresponding producers. Through systematic genomic analysis of gifted actinobacteria genera, identification of uvrA-like gene-containing BGCs, and targeted isolation of products from a BGC prioritized for metabolic analysis, we identified a new tetracycline-type DNA intercalator timmycins. Our results thus provide a new genome mining strategy for the efficient discovery of antitumor agents acting through DNA intercalation.

13.
Nat Chem Biol ; 19(11): 1415-1422, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37653171

RESUMEN

Hydroxytryptophan serves as a chemical precursor to a variety of bioactive specialized metabolites, including the human neurotransmitter serotonin and the hormone melatonin. Although the human and animal routes to hydroxytryptophan have been known for decades, how bacteria catalyze tryptophan indole hydroxylation remains a mystery. Here we report a class of tryptophan hydroxylases that are involved in various bacterial metabolic pathways. These enzymes utilize a histidine-ligated heme cofactor and molecular oxygen or hydrogen peroxide to catalyze regioselective hydroxylation on the tryptophan indole moiety, which is mechanistically distinct from their animal counterparts from the nonheme iron enzyme family. Through genome mining, we also identify members that can hydroxylate the tryptophan indole ring at alternative positions. Our results not only reveal a conserved way to synthesize hydroxytryptophans in bacteria but also provide a valuable enzyme toolbox for biocatalysis. As proof of concept, we assemble a highly efficient pathway for melatonin in a bacterial host.


Asunto(s)
5-Hidroxitriptófano , Melatonina , Animales , Humanos , Triptófano/metabolismo , Hemo/química , Bacterias/metabolismo
14.
Front Immunol ; 14: 1196892, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435067

RESUMEN

Background: Melanoma is typically regarded as the most dangerous form of skin cancer. Although surgical removal of in situ lesions can be used to effectively treat metastatic disease, this condition is still difficult to cure. Melanoma cells are removed in great part due to the action of natural killer (NK) and T cells on the immune system. Still, not much is known about how the activity of NK cell-related pathways changes in melanoma tissue. Thus, we performed a single-cell multi-omics analysis on human melanoma cells in this study to explore the modulation of NK cell activity. Materials and methods: Cells in which mitochondrial genes comprised > 20% of the total number of expressed genes were removed. Gene ontology (GO), gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), and AUCcell analysis of differentially expressed genes (DEGs) in melanoma subtypes were performed. The CellChat package was used to predict cell-cell contact between NK cell and melanoma cell subtypes. Monocle program analyzed the pseudotime trajectories of melanoma cells. In addition, CytoTRACE was used to determine the recommended time order of melanoma cells. InferCNV was utilized to calculate the CNV level of melanoma cell subtypes. Python package pySCENIC was used to assess the enrichment of transcription factors and the activity of regulons in melanoma cell subtypes. Furthermore, the cell function experiment was used to confirm the function of TBX21 in both A375 and WM-115 melanoma cell lines. Results: Following batch effect correction, 26,161 cells were separated into 28 clusters and designated as melanoma cells, neural cells, fibroblasts, endothelial cells, NK cells, CD4+ T cells, CD8+ T cells, B cells, plasma cells, monocytes and macrophages, and dendritic cells. A total of 10137 melanoma cells were further grouped into seven subtypes, i.e., C0 Melanoma BIRC7, C1 Melanoma CDH19, C2 Melanoma EDNRB, C3 Melanoma BIRC5, C4 Melanoma CORO1A, C5 Melanoma MAGEA4, and C6 Melanoma GJB2. The results of AUCell, GSEA, and GSVA suggested that C4 Melanoma CORO1A may be more sensitive to NK and T cells through positive regulation of NK and T cell-mediated immunity, while other subtypes of melanoma may be more resistant to NK cells. This suggests that the intratumor heterogeneity (ITH) of melanoma-induced activity and the difference in NK cell-mediated cytotoxicity may have caused NK cell defects. Transcription factor enrichment analysis indicated that TBX21 was the most important TF in C4 Melanoma CORO1A and was also associated with M1 modules. In vitro experiments further showed that TBX21 knockdown dramatically decreases melanoma cells' proliferation, invasion, and migration. Conclusion: The differences in NK and T cell-mediated immunity and cytotoxicity between C4 Melanoma CORO1A and other melanoma cell subtypes may offer a new perspective on the ITH of melanoma-induced metastatic activity. In addition, the protective factors of skin melanoma, STAT1, IRF1, and FLI1, may modulate melanoma cell responses to NK or T cells.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Células Endoteliales , Multiómica , Melanoma/genética , Células Asesinas Naturales
15.
Front Pediatr ; 11: 1158078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228439

RESUMEN

Introduction: This study aimed to verify the accuracy and safety of distraction osteogenesis for hemifacial microsomia assisted by a robotic navigation system based on artificial intelligence. Methods: The small sample early-phase single-arm clinical study, available at http://www.chictr.org.cn/index.aspx, included children aged three years and older diagnosed with unilateral hemifacial microsomia (Pruzansky-Kaban type II). A preoperative design was performed, and an intelligent robotic navigation system assisted in the intraoperative osteotomy. The primary outcome was the accuracy of distraction osteogenesis, including the positional and angular errors of the osteotomy plane and the distractor, by comparing the preoperative design plan with the actual images one week postoperatively. Perioperative indicators, pain scales, satisfaction scales, and complications at one week were also analyzed. Results: Four cases (mean 6.5 years, 3 type IIa and 1 type IIb deformity) were included. According to the craniofacial images one week after surgery, the osteotomy plane positional error was 1.77 ± 0.12 mm, and the angular error was 8.94 ± 4.13°. The positional error of the distractor was 3.67 ± 0.23 mm, and the angular error was 8.13 ± 2.73°. Postoperative patient satisfaction was high, and no adverse events occurred. Discussion: The robotic navigation-assisted distraction osteogenesis in hemifacial microsomia is safe, and the operational precision meets clinical requirements. Its clinical application potential is to be further explored and validated.

16.
Org Lett ; 25(16): 2918-2922, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37074364

RESUMEN

Bacterial azapteridine-containing phytotoxin toxoflavin is a causal agent of rice grain rot. Here, we heterologously reconstitute Bukholderia toxoflavin biosynthesis in Escherichia coli and identify key pathway intermediates, including the hitherto unknown ribityl-dedimethyl-toxoflavin. Furthermore, we characterized a cofactorless oxidase that converts ribityl-dedimethyl-toxoflavin to ribose and dedimethyl-toxoflavin, the latter of which then undergoes stepwise methylations to form toxoflavin. These findings provide new insights into the biosynthetic pathways of toxoflavin and related triazine metabolites.


Asunto(s)
Oxidorreductasas , Pirimidinonas , Triazinas , Escherichia coli/genética , Escherichia coli/metabolismo
17.
J Craniofac Surg ; 34(2): 813-816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730634

RESUMEN

Since our team reported the application of robot-assisted surgery in facial contouring surgery in 2020, further clinical trials with large samples have been conducted. This paper will report the interim results of a single-center, large-sample randomized controlled trial of the first robot developed by our team for facial contouring surgery. Meanwhile, this research field will be systematically reviewed and prospected.


Asunto(s)
Procedimientos Ortopédicos , Procedimientos Quirúrgicos Robotizados , Humanos , Procedimientos Quirúrgicos Robotizados/métodos , Cara , Huesos Faciales
18.
Environ Res ; 216(Pt 1): 114512, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36208790

RESUMEN

Anthropogenic activities are intensively affecting the structure and function of biological communities in river ecosystems. The effects of anthropogenic pollution on single-trophic community have been widely explored, but their effects on the structures and co-occurrence patterns of multitrophic communities remain largely unknown. In this study, we collected 13 water samples from the Neijiang River in Chengdu City of China, and identified totally 2352 bacterial, 207 algal, 204 macroinvertebrate, and 33 fish species based on the eDNA metabarcoding to systematically investigate the responses of multitrophic communities to environmental stressors. We observed significant variations in bacterial, algal, and macroinvertebrate community structures (except fish) with the pollution levels in the river. Network analyses indicated a more intensive interspecific co-occurrence pattern at high pollution level. Although taxonomic diversity of the multitrophic communities varied insignificantly, phylogenetic diversities of fish and algae showed significantly positive and negative associations with the pollution levels, respectively. We demonstrated the primary role of environmental filtering in driving the structures of bacteria, algae, and macroinvertebrates, while the fish was more controlled by dispersal limitation. Nitrogen was identified as the most important factor impacting the multitrophic community, where bacterial composition was mostly associated with NO3--N, algal spatial differentiation with TN, and macroinvertebrate and fish with NH4+-N. Further partial least-squares path model confirmed more important effect of environmental variables on the relative abundance of bacteria and algae, while macroinvertebrate and fish communities were directly driven by the algae-mediated pathway in the food web. Our study highlighted the necessity of integrated consideration of multitrophic biodiversity for riverine pollution management, and emphasized the importance of controlling nitrogen inputs targeting a healthy ecosystem.


Asunto(s)
ADN Ambiental , Ríos , Animales , Ríos/química , Ecosistema , Código de Barras del ADN Taxonómico , Filogenia , Monitoreo del Ambiente , Biodiversidad , Plantas , Nitrógeno , China
19.
Contrast Media Mol Imaging ; 2022: 3444360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051923

RESUMEN

Background: As the number and proportion of lymphocyte subsets are an important indicator of the immune function, an in depth understanding of the immune function of patients with malignant tumor has important clinical values for the treatment, prognosis, and evaluation of the disease. This retrospective study was to evaluate the clinical value of the absolute counts of lymphocyte subsets as potential blood biomarkers for progression and prognosis in breast cancer patients. Methods: A total of 237 BC patients and 55 age-matched female normal healthy donors were included in this study. Flow cytometry was used to determine the absolute counts and the percentages of CD3+, CD4+, CD8+, B, and NK cells. The receiver operating characteristic curve (ROC) was used to evaluate the accuracy of absolute count of lymphocyte subsets in the curative efficacy assessment. The clinicopathological parameters influencing the disease progression were determined by Cox proportional hazards regression. Progression-free survival (PFS) was estimated using the Kaplan-Meier method with the log-rank test. Results: Compared with the healthy donors, the absolute counts of lymphocyte subsets in patients decreased significantly. ROC analysis showed that the area under the curve of the CD4+ absolute count was 90% (95% confidence interval 0.859-0.940), and the sensitivity and specificity were 80.9% and 85.3%, respectively. The analysis of Cox regression showed that the cutoff value of the CD4+ absolute count ≥451 cells/µL might be a favorable prognostic factor. Multivariate analysis of prognostic factors of PFS showed that the CD4+ and CD8+ absolute count were independent factors for predicting PFS. Conclusions: The remarkably impaired absolute counts of the CD3+, CD4+, CD8+, B, and NK cells in patients with breast cancer can be used as potential susceptible biomarkers to evaluate the patient's immune status. The higher level of CD4+ and CD8+ absolute counts probably contributed to the longer PFS and favorable outcome of BC patients.


Asunto(s)
Neoplasias de la Mama , Biomarcadores/análisis , Neoplasias de la Mama/diagnóstico , Femenino , Humanos , Subgrupos Linfocitarios/química , Pronóstico , Estudios Retrospectivos
20.
Front Neurosci ; 16: 947282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090281

RESUMEN

Objective: To validate the clinical reliability of an individualized CT image-guided' free-hand catheter technique (CTGFC) for basal ganglia hematoma (BGH) evacuation. Methods: From January 2017 to December 2020, 58 cases of patients with BGH who underwent catheter evacuation were enrolled. The surgery was conducted using the CTGFC (n = 31) or stereotactic catheter technique (STC, n = 27). The authors evaluated the baseline characteristics, operation-related indicators, postoperative complications, hospitalization-related indicators, short-term and long-term functional outcomes, and mortality rate 1 year after surgery. Results: All patients underwent BGH evacuation under non-general anesthesia in the CTGFC group. The operative time (p < 0.01) and operation costs (p < 0.05) were significantly shorter in the CTGFC group than that in the STC group (p < 0.01). Comparable results were found in the catheter indwelling duration, residual hematoma volume, hematoma evacuation rate, incidence of postoperative complications, hospital ICU stay, and hospital costs between these two groups (p > 0.05). The duration of hospital stay was remarkably shorter in the CTGFC group than that in the STC group (p < 0.01). There were no differences in terms of the short-time functional outcomes score at discharge, including the Glasgow outcome scale (GOS) score, the activities of daily living (ADL) score, and the Karnofsky performance score (KPS). Moreover, comparable findings were also found in the 1-year postoperative GOS score, ADL score, KPS score, and mortality rate between these two groups. Conclusion: The simple CTGFC-assisted surgery was a safe and reliable option for BGH evacuation, especially in primary medical institutes and emergency situations with limited medical resources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...